Lefschetz–verdier Trace Formula and a Generalization of a Theorem of Fujiwara

نویسنده

  • YAKOV VARSHAVSKY
چکیده

The goal of this paper is to generalize a theorem of Fujiwara (formerly Deligne’s conjecture) to the situation appearing in a joint work [KV] with David Kazhdan on the global Langlands correspondence over function fields. Moreover, our proof is much simpler than the original one and applies to more general situations like algebraic spaces or Deligne–Mumford stacks without any changes. We also include proof of the Lefschetz–Verdier trace formula and of the additivity of filtered trace maps, thus making the paper essentially self-contained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reading List for Fall 2009 Seminar on Trace Formulas and Independence of `

[1] Deligne, P. Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 12 . Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. Lecture Notes in Mathematics, Vol. 569. Springer-Verlag, Berlin-New York, 1977. iv+312pp. [2] Deligne, P. La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. No. 52 (1980), 137–252. [3] Freitag, E. and Kiehl...

متن کامل

Simple Proof of a Generalization of Deligne’s Conjecture

The goal of this paper is to give a simple proof of Deligne’s conjecture (proven by Fujiwara) and to generalize it to the situation appearing in our joint project [KV] with David Kazhdan on the global Langlands correspondence over function fields. Our proof applies without any changes to more general situations like algebraic spaces or Deligne–Mumford stacks. Introduction Suppose we are given a...

متن کامل

A Proof of a Generalization of Deligne’s Conjecture

The goal of this paper is to give a simple proof of Deligne’s conjecture on the Lefschetz trace formula (proven by Fujiwara) and to generalize it to the situation appearing in the forthcoming joint paper with D. Kazhdan. Our proof holds in the realm of ordinary algebraic geometry and does not use rigid geometry.

متن کامل

Fixed Point Theory and Trace for Bicategories

The Lefschetz fixed point theorem follows easily from the identification of the Lefschetz number with the fixed point index. This identification is a consequence of the functoriality of the trace in symmetric monoidal categories. There are refinements of the Lefschetz number and the fixed point index that give a converse to the Lefschetz fixed point theorem. An important part of this theorem is...

متن کامل

Relative Fixed Point Theory

The Lefschetz fixed point theorem and its converse have many generalizations. One of these generalizations is to endomorphisms of a space relative to a fixed subspace. In this paper we define relative Lefschetz numbers and Reidemeister traces using traces in bicategories with shadows. We use the functoriality of this trace to identify different forms of these invariants and to prove a relative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008